
Xen and the Art of
Virtualization

Introduction
 Challenges to build virtual machines

 Performance isolation
 Scheduling priority
 Memory demand
 Network traffic
 Disk accesses

 Support for various OS platforms
 Small performance overhead

Xen
 Multiplexes resources at the granularity of an

entire OS
 As opposed to process-level multiplexing
 Price: higher overhead

 Target: 100 virtual OSes per machine

Xen: Approach and Overview
 Conventional approach

 Full virtualization
 Cannot access the hardware
 Problematic for certain privileged instructions (e.g.,

traps)
 No real-time guarantees

Xen: Approach and Overview
 Xen: paravirtualization

 Provides some exposures to the underlying HW
 Better performance
 Need modifications to the OS
 No modifications to applications

Memory Management
 Depending on the hardware supports

 Software managed TLB
 Associate address space IDs with TLB tags
 Allow coexistence of OSes
 Avoid TLB flushing across OS boundaries

Memory Management
 X86 does not have software managed TLB

 Xen exists at the top 64MB of every address
space

 Avoid TLB flushing when an guest OS enter/exist
Xen

 Each OS can only map to memory it owns
 Writes are validated by Xen

CPU
 X86 supports 4 levels of privileges

 0 for OS, and 3 for applications
 Xen downgrades the privilege of OSes
 System-call and page-fault handlers registered to

Xen
 “fast handlers” for most exceptions, Xen isn’t

involved

Device I/O
 Xen exposes a set of simple device

abstractions

The Cost of Porting an OS to Xen
 Privileged instructions
 Page table access
 Network driver
 Block device driver
 <2% of code-base

Control Management
 Separation of policy and mechanism
 Domain0 hosts the application-level

management software
 Creation and deletion

of virtual network

interfaces and block

devices

Control Transfer: Hypercalls and
Events
 Hypercall: synchronous calls from a domain

to Xen
 Analogous to system calls

 Events: asynchronous notifications from Xen
to domains
 Replace device interrupts

Data Transfer: I/O Rings
 Zero-copy semantics

CPU Scheduling
 Borrowed virtual time scheduling

 Allows temporary violations of fair sharing to
favor recently-woken domains

 Goal: reduce wake-up latency

Time and Timers
 Xen provides each guest OS with

 Real time (since machine boot)
 Virtual time (time spent for execution)
 Wall-clock time

 Each guest OS can program a pair of alarm
timers
 Real time
 Virtual time

Virtual Address Translation
 No shadow pages (VMWare)
 Xen provides constrained but direct MMU

updates
 All guest OSes have read-only accesses to

page tables
 Updates are batched into a single hypercall

Physical Memory
 Reserved at domain creation times
 Memory statically partitioned among domains

Network
 Virtual firewall-router attached to all domains
 Round-robin packet scheduler
 To send a packet, enqueue a buffer descriptor

into the transmit rang
 Use scatter-gather DMA (no packet copying)

 A domain needs to exchange page frame to avoid
copying

 Page-aligned buffering

Disk
 Only Domain0 has direct access to disks
 Other domains need to use virtual block

devices
 Use the I/O ring
 Reorder requests prior to enqueuing them on the

ring
 If permitted, Xen will also reorder requests to

improve performance
 Use DMA (zero copy)

Evaluation
 Dell 2650 dual processor
 2.4 GHz Xeon server
 2GB RAM
 3 Gb Ethernet NIC
 1 Hitachi DK32eJ 146 GB 10k RPM SCSI

disk
 Linux 2.4.21 (native)

Relative Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linux Xen VMWare UML

SPEC INT2000 score

CPU Intensive

Little I/O and OS interaction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linux Xen VMWare UML

SPEC WEB99

180Mb/s TCP traffic

Disk read-write on 2GB dataset

Concurrent Virtual Machines

Multiple Apache
processes in Linux

vs.

One Apache process in
each guest OS

Performance Isolation
 4 Domains
 2 running benchmarks
 1 running dd
 1 running a fork bomb in the background
 2 antisocial domains contributed only 4%

performance degradation

Scalability

