
Slide 1 of 15 XFS

XFS (64 bit FS by SGI)

 XFS was originally developed by Silicon Graphics, Inc.

 back in the early 90s.

 At that time,

 SGI found that their existing filesystem (EFS)

 was quickly becoming unsuitable

 for tackling the extreme computing challenges of the day.

 Addressing this problem,

 SGI decided to design a completely new high-performance 64-bit

filesystem

 rather than attempting to tweak EFS

 to do something that it was never designed to do.

 Thus, XFS was born, and was made available to the computing

public with the release of IRIX 5.3 in 1994.

Slide 2 of 15 XFS

XFS (64 bit FS by SGI)

 To this day,

 it continues to be used as the underlying filesystem

 for all of SGI's IRIX-based products,

 from workstations to supercomputers.

 And now, XFS is also available for Linux.

 The arrival of XFS for Linux is exciting,

 primarily because

 it provides the Linux community

 with a robust, refined, and very feature-rich filesystem

 that's capable of scaling to meet the toughest storage challenges.

Slide 3 of 15 XFS

XFS design

 In the "Scalability in the XFS Filesystem" paper

 featured at USENIX '96,

 the SGI engineers explain that

 XFS was designed with

 a single main idea: "think big"

 Indeed, XFS has been designed to

 eliminate the limitations

 found in traditional filesystems.

Slide 4 of 15 XFS

Introducing allocation groups

 When an XFS filesystem is created,

 the underlying block device is split into

 8 or more equally-sized linear regions.

 You can think of them as "chunks" or "linear ranges",

 but in XFS terminology

 each region is called an "allocation group".

 Allocation groups are unique in that

 each allocation group manages

 its own inodes and

 free space,

 in effect turning them into a kind of sub-filesystem

 that exists transparently within the XFS filesystem proper.

Slide 5 of 15 XFS

Allocation groups and scalability

 So, why exactly does XFS have allocation groups?

 Primarily, XFS uses allocation groups

 so that it can efficiently handle parallel IO.

 Because each allocation group is effectively its own independent

entity,

 the kernel can interact with multiple allocation groups

simultaneously.

 Without allocation groups,

 the XFS filesystem code could become a performance bottleneck,

 forcing IO-hungry processes to "get in line"

 to make inode modifications

 or performing other kinds of metadata-intensive operations.

Slide 6 of 15 XFS

Allocation groups and scalability

 Thanks to allocation groups,

 the XFS code will allow multiple threads and processes

 to continue to run in parallel,

 even if many of them are performing non-trivial IO

 on the same filesystem.

 So, match XFS with some high-end hardware and

 you'll get high-end results

 rather than a filesystem bottleneck.

 Allocation groups also help to optimize

 parallel IO performance on multiprocessor systems,

 because more than one metadata update

 can be "in transit" at the same time.

Slide 7 of 15 XFS

B+ trees everywhere (for free space)
 Internally,

 allocation groups use efficient B+ trees

 to keep track of important data such as

 ranges of free space (also called "extents") ,

 as well as inodes.

 The ability to find regions of free space quickly
 is critical for maximizing write performance,

 which is something that XFS is very good at.

 In fact, each allocation group has two B+ trees

 used to keep track of free space;

 1. one B+ tree (sizes)

 stores:
 the extents of free space

 ordered by size,

 and

 2. other B+ tree (beginning addresses)

 has
 the regions ordered by

 their starting physical location on the block device.

Slide 8 of 15 XFS

B+ trees everywhere (for inodes)

 XFS is also very efficient

 when it comes to the management of inodes

 Each allocation group allocates inodes as needed,

 in groups of 64

 An allocation group keeps track of its own inodes

 by using a B+ tree

 that records where each particular inode number

 can be found on disk.

 You'll find that

 XFS uses B+ trees as much as possible,

 due to their excellent performance and

 tremendous scalability.

Slide 9 of 15 XFS

Journaling

 Like ReiserFS,

 XFS only journals metadata, and

 does not take any special precautions to ensure that the data

makes it to disk before metadata is written.

 This means that with XFS (just like with ReiserFS),

 it's possible for recently modified data to be lost

 in the event of an unexpected reboot.

 However, a couple of properties of XFS' journal

 make this issue less common than it is with ReiserFS.

Slide 10 of 15 XFS

Journaling

 With ReiserFS,

 an unexpected reboot can result

 in recently modified files

 containing portions of previously deleted files.

 Besides the obvious data loss, this could also theoretically

pose a security threat.

 In contrast,

 XFS ensures that

 any unwritten data blocks are zeroed on reboot,

 when XFS journal is replayed.

 Thus, missing blocks are filled with null bytes,

 eliminating the security hole –

 a much better approach.

Slide 11 of 15 XFS

Journaling

 Now, what about the data loss issue itself?

 In general,

 this problem is minimized with XFS

 due to the fact that

 XFS generally, writes pending metadata updates to disk

 much more frequently than ReiserFS does,

 especially during periods high disk activity.

 Thus, in the event of a lockup-failure,

 you will generally lose

 fewer of your recent metadata modifications

 than you would with ReiserFS.

 Of course,

 this does not directly address

 the problem of not writing data blocks in time,

 but writing metadata more frequently

 does encourage data to be written more frequently as well.

Slide 12 of 15 XFS

Delayed allocation

 delayed allocation, a feature unique to XFS.

 the term allocation refers

 to the process of finding regions of free space

 to use for storing new data.

 XFS handles allocation by breaking it into a two-step process.

 First,

 when XFS receives new data to be written,

 it records the pending transaction in RAM and

 simply reserves an appropriate amount of space on the underlying filesystem.

 However, while XFS reserves space for the new data,

 it doesn't decide

 what filesystem blocks will be used to store the data,

 at least not yet.

 XFS procrastinates, (odugovlačiti)

 delaying this decision

 to the last possible moment,

 right before this data is actually written to disk

Slide 13 of 15 XFS

Delayed allocation

 By delaying allocation,

 XFS gains many opportunities

 to optimize write performance.

 When it comes time to write the data to disk,

 XFS can now allocate free space intelligently,

 in a way that optimizes filesystem performance.

 In particular,

 if a bunch of new data is being appended to a single file,

 XFS can allocate a single, contiguous region on disk

 to store this data.

 If XFS hadn't delayed its allocation decision,

 it may have unknowingly written the data

 into multiple non-contiguous chunks,

 reducing write performance.

Slide 14 of 15 XFS

ext3 v XFS: small file performance

test1: ext3 v XFS

0

2

4

6

8

10

read w rite

M
B

/s

ext2

ext3-wb

ext3-o

ext3-j

xfs

xfs-best

Slide 15 of 15 XFS

ext3 v XFS: ultra small file performance

test2: ext3 v XFS

0

50

100

150

200

250

300

350

read write

K
B

/s

ext2

ext3-wb

ext3-o

ext3-j

xfs

xfs-best

