Other techniques

m 1. Track-aligned Extents

m 2. Exploiting Disk Bandwidth for Small Files

m 3. Disk Shuffling

®m 4. Log Approach

embeded Slide 1 of 58



Other tehniques

m1l. Track-aligned Extents

embeded Slide 2 of 58



1. Track-aligned Extents

Based on disk-specific knowledge about disk data layout

allocating and accessing
related data
on disk track boundaries

system avoids most
rotational latency
and
track crossing overheads.

Avoiding these overheads
can increase disk access efficiency
by up to 50% for mid-sized requests (100-500 KB).

embeded Slide 3 of 58



Head Switch time

m Head switch. A head switch occurs
= when a single request accesses a sequence of LBNs
=~ whose on-disk locations span two tracks.

S1IB Sectors
per Irack

Hea Aveg.

Disk Year Seel

Number
of Tracks

Capacity

EPM  Switch
5400 1 ms
7200 1 ms
7200 1.1ms

10000 0.8 ms

10000 08ms 30ms

15000 08ms 39%ms

10000 06ms 4 7ms

06-36
216-124
390-247
382-195
334-224
386-286
528-353

10 ms
8.0 ms
7. 6ms
3.9 ms

1992
1967
1998
1999
1999
2000
2000

HP C2247

Cuantuom Viking

IBEM Ulirastar 18 ES
IBEM Ulirastar 18LZX
CQuantum Atlas 10E
Seagate Cheetah X15
Cuantum Atlas 10K II

25649
49152
57090
116340
60126
103750
2014

1 GBE
45GB
9 GB
12 GB
9GB
12 GB
0GB

Table 1: Reprezentative disk characteriztics. MNote the small change 1 head switch tume relatrve to other charactenstics.

m Even compared to other disk characteristics,
m head switch
m time has improved little in the past decade.

embeded Slide 4 of 58




Zero-latency access

m \With zero-latency access support, disk firmware can read the N
sectors, from the media into its buffers, in any order

® In the best case of reading exactly one track,
the head can start reading data as soon as the seek is completed,;

no rotational latency is involved
because all sectors on the track are needed.

Anerage Rotational Latency for 3 10K RPN disk

Crdinary Disk
— Zero-latency Disk

L]
L1 1 1

™

Romtional latancy [ms]
=] L5

0% 25% 50% TE% 100%
IO size [ of track size]

Figurs 3: Awverage rotational latency for ordinary and zero-
latency disks az a functon of track-alizned reguest size,
The request size 15 exprassed a5 a percentaze of the track size.



Timing

2.2 ms 8.2ms

segk r. lat. & h. switch & mxfer 7 ms SMormal
access

Track-alignea
ACCESS

media transfer Track-aligned access
out-of-order delvery

tirmie [ms)

Fizure 7: Breakdovwn of measured response time for a zero-
latency dizk. “MNeommal access” represents track-unalizned ac-
cess, Including seak, rotational latency (rilat), bead swntch, me-
dia transfer (mogfer), and bus transfer (bxfer). For rtack-alizned
access, the m-ordsr bus transfer dees not overlap the media
transfer. With cut-of-order bus deliverv, cverlap of bus and
media Tansfers 15 possible.



Implementation

Detecting track boundaries.
This task is more difficult than might be expected, because of:
1. zoned recording
= 2. media defect management

set of changes needed
to use track boundary knowledge
In an existing file system.
Grouping (for block-based FS, like ext3)

Allocation of track-aligned extents
Very convenient for extent-based FS (like XFS, NTFS)

embeded Slide 7 of 58



Performance improvements

m For large-file workloads,
a version of FreeBSD’s FFS implementation
that exploits traxtents
reduces application run times by up to 20%
compared to the original version.

B A video server using traxtent-based requests
can support 56% more concurrent streams

at the same startup latency and buffer space.

m For LFS,
44% lower overall write cost
for track-sized segments
can be achieved

embeded Slide 8 of 58



Results

| .

4GB scan  S12MB diff 1GB copy Postmark SSH-buld head =*
unmodified 18965 69.7s 15695 33 tr/s 720s 46s
fast start 18805 J00s 1553 s 33 tr's 715s 33s
traxtents 199 8¢ 26.6s 1249 5 33 trfs 71.35s 32s

S

Table 2: FreeBSD FFS results. All but the head # values are an average of three runs. The individual run times deviate from their
average by less than 1%. The head * value is an average of five runs and the individual runs deviate by less than 3.5%. Postmark
reported the same number of transactions per second in all three runs for the respective FFS, except for one run of the unmodified

FFS that reported 34 transactions per second.

embeded Slide 9 of 58



Other techniques

m2. Exploiting Disk Bandwidth
=

m for

mSmall Files

embeded Slide 10 of 58



2. Exploiting Disk Bandwidth for Small Files

C-FFS (Co-locating Fast File System),
Introduces 2 techniques,

for exploiting disk bandwidth for small files and metadata
1. embedded inodes
2. explicit grouping

1. embedded inodes
iInodes for most files
g are stored in the directory
-] with the corresponding name, (in FCB)
removing a physical level of indirection
- without sacrificing the logical level of indirection.

m 2. explicit grouping
data blocks of multiple small files named by a given directory are
g allocated adjacently and
-~ moved to and from the disk
- as a unit in most cases.

embeded Slide 11 of 58



Embedded inodes

L7

A_TIdeal Layout F1-F5 blocks

e — e from same file
F1|F2 D F; r3| Fs

B. Reality after usage

e —
D+I F1(F2 D+ Fd4| |F3 F5

C. Embedded Inodes

4 s N T

D+I Fa|F4|FS D=1 [F1|F2

D. Explicit Grouping

Figure 1: Orgamzation and layout of file data on disk.

zure shows the on-disk locations of directory
blocks ( ed “D7). mode blocks (T and the data
for five single-block files ('F17 — 'F37) i four different
scenarios: (A) the 1deal conventional layout, (B) a more
realistic conventional layout, (C) with the addition of
embedded nodez. and (D) with both embedded modes
and explicit grouping (with a maximum group size of

en four blocks).



Explicit grouping

Explicit grouping
places the data blocks of multiple files
at adjacent disk locations

accesses them as a Single unit most of the time

To decide which small files to co-locate,
C-FFS exploits the inter-file relationships
indicated by the name space.

Specifically, C-FFS groups files
whose inodes are embedded
In the same directory.

As a result,
explicit grouping has the potential
to improve small file performance
by an order of magnitude
over conventional file system implementations.

embeded Slide 13 of 58



Performances

i

=7 = Conventional

(RRELE iy

== Embedded = Conventional
= Grouping N :Emheqded
mm Embed+Group 1500 Grouping

=

-

=]
|

== Embed+Group

mnrn
(SRR

[ |
o=
-
1

Throughput (files/second)

Disk Requests per 1000 Files

a

-
=t

(5

-Creale.“-.".frite Fead Owerwnte Remove CreateMVrite Read  Overwntz  Remove

(a) Files per second ()} D1sk requests per 1000 files

Figure 5: Small file throughput when using synchronous wintes for metadata mtegnty.

embeded Slide 14 of 58




Other techniques

m3. Disk Shuffling

embeded Slide 15 of 58



03. Disk Shuffling

Adapting disk layouts to observed, rather than predicted, access patterns can
result in faster I/O operations. In particular, a technique called disk shuffling,
which moves frequently-accessed data into the center of a disk, can
substantially reduce mean seek distances. We report here on extensions to
and (partial) validation of earlier work on this approach at the University of
Maryland.

Starting from disk access traces obtained during normal system use of 4.2BSD-
based file systems, we established a repeatable simulation environment across a
range of workloads and disk types for comparing different shuffling algorithms.
We explored several of these, including how often to make layout changes, how
large a unit of data to shuffle, and some mechanisms to exploit sequentiality of
reference.

Our conclusions: some of the originally identified benefits are real, but sometimes
performance is worse rather than better unless access interdependencies are
considered.

Most of the benefit can be obtained from infrequent (weekly) shuffling. Smaller
guanta generally produce better results, at the expense of needing more working
storage.

Overall, the benefits are small to moderate, but are likely to be much larger with
file systems that do not do such a good job of initial data placement.

embeded Slide 16 of 58



Disk Shufling

235858
235858

e
i
e

i

< <
fa— fa—
5] 5]
[ [
[iE] [iE]
fs] fs]
= =
— —
= =

200 400 600 300 1000 1200 1400 200 400 600 500 1000 1200 1400
Cylinder Cylinder

a. As measured on the original layout. b. After rearrangement into an organ pipe.

Figure 1. Cylinder access distribution over a twenty-four hour period. Measured on an HP7935 disk
attached to red a timesharing system running HP-UX.

embeded Slide 17 of 58



Principal

B Grouping the most frequently-accessed data blocks together at the center
of the disk can reduce the average seek distance substantially. A good
way to do this is the organ pipe arrangement, formed by placing the most
frequently accessed cylinder in the middle of the disk, the next most
frequently accessed cylinders on either side of the middle cylinder, and
so on. This arrangement is provably optimal for independent disk
accesses [Wong83]. The effect of applying it to the disk shown in Figure
la is displayed in Figure 1b.

Moving the data around to achieve such an arrangement is known as
disk shuffling. The algorithm is sufficiently straightforward that it can be
done inside the disk controller, or inside the device driver.

In all cases, a count is kept of the number of requests directed to each
shuffling quantum (e.g. cylinder) over a period of time, and these counts
are used to drive the rearrangement.

embeded Slide 18 of 58



nds)
as)

osec

e
=

Average 1O Time (microsecon

‘B
=.
i}
=

N

|_

0
i
[}
e}
ot
1}
=

=

. . . . . 200 400 600 800 1000
0 200 400 600 8O0 1000 Time (hours)
Time (hours) ¢. Average physical I/O time after shuffling (mean
b. Average physical /O time before shuffling = 23.2 ms).
(mean =241 ms).

embeded Slide 19 of 58



Other techniques

m 4. Log Approach

embeded Slide 20 of 58



04. LFS

B The fundamental idea of a log-structured file system
Is to improve write performance by
buffering a sequence of file system changes in the file cache and
then writing all the changes to disk sequentially
In a single disk write operation.

B The information written to disk in the write operation includes:
file data blocks
attributes
iIndex blocks
directories

almost all the other information used to manage the file system.

B For workloads that contain many small files,
a log-structured file system converts
many small synchronous random writes of traditional file systems
Into large asynchronous sequential transfers
that can utilize nearly 100% of the raw disk bandwidth.

embeded Slide 21 of 58



3. LFS

whole disk = log (append only log)
called log-structured file system

LFS basic concept
= Collect large number of written data in the cache
= Put in the log in large sequential access

As files are modified,

= both file data and header information
= are appended to the log

= In a sequential stream

= without seeks.

If individual files are small
= they can be collected into large blocks
= before being written to the log.

embeded Slide 22 of 58



3. LFS Benefits

B Fast recovery

B Temporal locality

m Versioning

embeded Slide 23 of 58



3. LFS difficult issues

There are 3 difficult issues
= that
= must be resolved
= to make log-structured file systems practical.

|. how to handle the occasional retrievals (reading)
= that will be required from the log

ll. how to manage log wrap-around,

lll. how to achieve efficient disk space utilization

embeded Slide 24 of 58



Classical FS (adding new block)

hMap Array

shows a traditional file system
with separate map and data areas;
a new data block is allocated and
the map is updated in place.

embeded Slide 25 of 58



Log DATA (adding new block)

m the data area has been made into a log:
m each new data block gets added at the end of the log,
m but map entries are still updated in place.

embeded Slide 26 of 58



UNIX LFS

SUPERELOCRS

| HH.._H_H-‘-‘
! BECMENT 1 | SEGMERNT 2 - l‘EE-EHEI‘-l'[ I SEGMENT N

\

BEGMENT
BUMMART

SUMMA RY CHECESLIM
[ATA CHECKSM
NEXT SECMENT PONTER
CREATE TIME
NUM BLOCKS
K FINFOS NI [NODES
VERSIHN M EER \
PLACS o
INODE MM EER File info
FINED 1
- LOGICAL MLOCK §

FINFO M -
LOGHAL BLOCE N
INODE DISK AIDEESS N

IHOIE DISK ATEESS §

embeded Sl1ae 21 o1 o8



LFS Segments under UNIX

A Log-Structured File System.
A file system is composed of segments as shown in Figure (a).

Each segment consists of
a summary block followed by
data blocks and inode blocks (b).

The segment summary contains
checksums to validate both the segment summary and the data blocks,
a timestamp,
a pointer to the next segment, and
information that describes
| each file and inode that appears in the segment (c).

Files are described by FINFO structures
that identify the inode number and
version of the file (as well as each block of that file)
located in the segment (d).

embeded Slide 28 of 58



Wrap-around

MNewest Info Oldest Info

;
Wrap |

Mewe st Info ,.' 7, Oldest Info

new data Wrap Point

livedata ——«
Mewest Info

k=

—_— Oldest Info

Wrap Point

I I:I Dead Information /'I:I Live Information

Figure 2. Incremental compaction in a log-structured file system. New data is appended to
the log from left-to-right. In (a) the log has just filled up; among the oldest blocks in the
log, only a few awe still alive. In (b) the live information is compacted to the head of the log,
leaving empty space for new log information. In (c) new information is appended to the
log, regenerating the situation in (a).

empeaded DllUkE 29 Ul 20



Performance Comparisons

LFS will outperform
other file systems
for writes.

In looking for weaknesses of LFS approach,
it thus makes most sense
to look at reads that miss in the file cache.

For small files,
a log-structured file system
will have read performance
at least as good as today’s file systems

In the worst case, one seek will be required for the file map and one for
the file data.

With a little cleverness in the log management,

it should be possible to write the file map

close to the file data

so they can both be retrieved with a single seek.

This would result in 2x better performance than current file systems.

embeded Slide 30 of 58



Large file reading (file written at once)

For large-file reads, there are 2 cases to consider.

1. The simplest case is files that are written all-at-once.

These files will be contiguous in the log,
which allows them to be read
at least as efficiently as today’s best file systems
(particularly if the file map is written next to the data in the log).

Random-access reads to such a file will require seeks,
but no more in a log-structured file system
than in a traditional file system.

embeded Slide 31 of 58



Large access (file written piece-wise)

2. The second case for large files consists of those that are written
piece-wise, either

by gradually appending to the files or

by updating them in random-access mode.
The logging approach permits such piece-wise writes and

does not require the whole file to be rewritten,

but the new data for the file will go at the end of the log.

This will not be adjacent on disk
to other data written to the file previously.

If the file is later read sequentially
from one end to the other,
many seeks will be required.

In comparison,
a more traditional file system can keep
the file’s data contiguous on disk
even under this sort of access pattern.

embeded Slide 32 of 58



