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1. Track-aligned Extents 

 Based on disk-specific knowledge about disk data layout 

 

 allocating and accessing  

 related data  

 on disk track boundaries 

 

 system avoids most  

 rotational latency  

 and  

 track crossing overheads.  

 

 Avoiding these overheads  

 can increase disk access efficiency  

 by up to 50% for mid-sized requests (100–500 KB).  
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Head Switch time 

 Head switch. A head switch occurs  

 when a single request accesses a sequence of LBNs  

 whose on-disk locations span two tracks. 

 

 

 

 

 

 

 

 

 

 

 Even compared to other disk characteristics,  

 head switch 

 time has improved little in the past decade. 
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Zero-latency access 

 With zero-latency access support, disk firmware can read the N 

sectors, from the media into its buffers, in any order 

 In the best case of reading exactly one track,  

 the head can start reading data as soon as the seek is completed;  

 no rotational latency is involved  

 because all sectors on the track are needed. 
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Timing 
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Implementation 

 Detecting track boundaries.  

 This task is more difficult than might be expected, because of:  

 1.   zoned recording 

 2.  media defect management 

 

 

 set of changes needed  

 to use track boundary knowledge  

 in an existing file system.  

 Grouping (for block-based FS, like ext3) 

 Allocation of track-aligned extents 

 Very convenient for extent-based FS (like XFS, NTFS)  
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Performance improvements 

 For large-file workloads,  

 a version of FreeBSD’s FFS implementation  

 that exploits traxtents  

 reduces application run times by up to 20%  

 compared to the original version.  

 

 A video server using traxtent-based requests  

 can support 56% more concurrent streams  

 at the same startup latency and buffer space.  

 

 For LFS,  

 44% lower overall write cost  

 for track-sized segments  

 can be achieved 
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Results 

   
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Other techniques 

 

2. Exploiting Disk Bandwidth  

    

   for  

 

Small Files 
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2. Exploiting Disk Bandwidth for Small Files 

 C-FFS (Co-locating Fast File System),  

 introduces 2 techniques,  

 for exploiting disk bandwidth for small files and metadata 

 1. embedded inodes   

 2. explicit grouping 
 

 1. embedded inodes  

 inodes for most files  

 are stored in the directory  

with the corresponding name, (in FCB) 

 removing a physical level of indirection  

without sacrificing the logical level of indirection. 

 

 2. explicit grouping  

 data blocks of multiple small files named by a given directory are 

  allocated adjacently and  

moved to and from the disk  

 as a unit in most cases. 

 



Slide 12 of 58 embeded 

Embedded inodes 

 
F1-F5 blocks 

from same file 
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Explicit grouping 

 Explicit grouping  

 places the data blocks of multiple files  

 at adjacent disk locations 

 accesses them as a single unit most of the time  

 

 To decide which small files to co-locate,  

 C-FFS exploits the inter-file relationships  

 indicated by the name space. 

 

 Specifically, C-FFS groups files  

 whose inodes are embedded  

 in the same directory. 

 

 As a result,  

 explicit grouping has the potential  

 to improve small file performance  

 by an order of magnitude  

 over conventional file system implementations.  
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Performances 
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Other techniques 

 

3. Disk Shuffling 
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03. Disk Shuffling 

 Adapting disk layouts to observed, rather than predicted, access patterns can 
result in faster I/O operations. In particular, a technique called disk shuffling, 
which moves frequently-accessed data into the center of a disk, can 
substantially reduce mean seek distances. We report here on extensions to 
and (partial) validation of earlier work on this approach at the University of 
Maryland. 

 Starting from disk access traces obtained during normal system use of 4.2BSD-
based file systems, we established a repeatable simulation environment across a 
range of workloads and disk types for comparing different shuffling algorithms. 
We explored several of these, including how often to make layout changes, how 
large a unit of data to shuffle, and some mechanisms to exploit sequentiality of 
reference. 

 Our conclusions: some of the originally identified benefits are real, but sometimes 
performance is worse rather than better unless access interdependencies are 
considered. 

 Most of the benefit can be obtained from infrequent (weekly) shuffling. Smaller 
quanta generally produce better results, at the expense of needing more working 
storage. 

 Overall, the benefits are small to moderate, but are likely to be much larger with 
file systems that do not do such a good job of initial data placement. 
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Disk Shufling 

   
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Principal 

 Grouping the most frequently-accessed data blocks together at the center 

of the disk can reduce the average seek distance substantially. A good 

way to do this is the organ pipe arrangement, formed by placing the most 

frequently accessed cylinder in the middle of the disk, the next most 

frequently accessed cylinders on either side of the middle cylinder, and 

so on. This arrangement is provably optimal for independent disk 

accesses [Wong83]. The effect of applying it to the disk shown in Figure 

1a is displayed in Figure 1b. 

 

 Moving the data around to achieve such an arrangement is known as 

disk shuffling. The algorithm is sufficiently straightforward that it can be 

done inside the disk controller, or inside the device driver.  

 

 In all cases, a count is kept of the number of requests directed to each 

shuffling quantum (e.g. cylinder) over a period of time, and these counts 

are used to drive the rearrangement.  

 



Slide 19 of 58 embeded 

Results 

   
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Other techniques 

 

 

 4. Log Approach 
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04. LFS 

 The fundamental idea of a log-structured file system 

 is to improve write performance by  

 buffering a sequence of file system changes in the file cache and  

 then writing all the changes to disk sequentially  

 in a single disk write operation. 
 

 The information written to disk in the write operation includes: 

 file data blocks  

 attributes  

 index blocks  

 directories 

 almost all the other information used to manage the file system.  
 

 For workloads that contain many small files,  

 a log-structured file system converts  

 many  small synchronous random writes of traditional file systems  

 into large asynchronous sequential transfers  

 that can utilize nearly 100% of the raw disk bandwidth. 
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3. LFS 

 whole disk = log (append only log) 

 called log-structured file system 

 

 LFS basic concept 

 Collect large number of written data in the cache 

 Put in the log in large sequential access 

 

 As files are modified,  

 both file data and header information 

 are appended to the log  

 in a sequential stream 

 without seeks.  

 

 if individual files are small  

 they can be collected into large blocks  

 before being written to the log.  
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3. LFS Benefits 

Fast recovery 

 

Temporal locality 

 

Versioning 
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3. LFS difficult issues 

 There are 3 difficult issues  

 that  

 must be resolved  

 to make log-structured file systems practical.  

 

 I. how to handle the occasional retrievals (reading)  

 that will be required from the log  

 

 II.  how to manage log wrap-around;  

 

 III. how to achieve efficient disk space utilization 
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Classical FS (adding new block) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 shows a traditional file system  

 with separate map and data areas;  

 a new data block is allocated and  

 the map is updated in place. 

new 

block 
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Log DATA (adding new block) 

 

 
 

 

 

 

 

 

 

 

 

 the data area has been made into a log:  

 each new data block gets added at the end of the log,  

 but map entries are still updated in place. 

new 

block 
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UNIX LFS 

 

 

 

 

files 
File info 
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LFS Segments under UNIX 

 

 A Log-Structured File System.  

 A file system is composed of segments as shown in Figure (a).  

 

 Each segment consists of  

 a summary block followed by  

 data blocks and inode blocks (b).  
 

 The segment summary contains  

 checksums to validate both the segment summary and the data blocks,  

 a timestamp,  

 a pointer to the next segment, and  

 information that describes  

 each file and inode that appears in the segment  (c). 

 

 Files are described by FINFO structures  

 that identify the inode number and  

 version of the file (as well as each block of that file)  

 located in the segment (d). 
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Wrap-around 

 

 

new data  

live data  
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Performance Comparisons 

 LFS  will outperform 

 other file systems  

 for writes.  
 

 In looking for weaknesses of LFS approach,  

 it thus makes most sense  

 to look at reads that miss in the file cache.  
 

 For small files,  

 a log-structured file system  

 will have read performance  

 at least as good as today’s file systems 
 

 In the worst case, one seek will be required for the file map and one for 
the file data.  

 With a little cleverness in the log management,  

 it should be possible to write the file map  

 close to the file data  

 so they can both be retrieved with a single seek.  

 This would result in 2x better performance than current file systems. 



Slide 31 of 58 embeded 

Large file reading (file written at once) 

 For large-file reads, there are 2 cases to consider.  

 

 1. The simplest case is files that are written all-at-once.  

 

 These files will be contiguous in the log,  

 which allows  them to be read  

 at least as efficiently as today’s best file systems  

 (particularly if the file map is written next to the data in the log).  

 

 Random-access reads to such a file will require seeks,  

 but no more in a log-structured file system  

 than in a traditional file system. 
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Large access (file written piece-wise)  

 2. The second case for large files consists of those that are written 

piece-wise, either  

 by gradually appending to the files or 

  by updating them in random-access mode.  

 The logging approach permits such piece-wise writes and  

 does not require the whole file to be rewritten,  

 but the new data for the file will go at the end of the log. 
 

 This will not be adjacent on disk  

 to other data written to the file previously.  
 

 If the file is later read sequentially  

 from one end to the other,  

 many seeks will be required.  
 

 In comparison,  

 a more traditional file system can keep  

 the file’s data contiguous on disk  

 even under this sort of access pattern. 


